Jon Thysell

Father. Engineer. Retro games. Ukuleles. Nerd.

Tag: emulation

Adventures in Macintosh restoration Part I

I have a lot of fond childhood memories with classic macs and after watching a variety of restoration videos on YouTube, playing around with some emulators, and needing a new project, I’ve decided that it might be fun to try and restore a classic mac on my own.

My history with Macintosh

Growing up in the 90’s, my family was an Apple family, and my first computer was a Macintosh IIfx with its Motorola 68030 processor and 20MB of RAM. When my father eventually made the switch to Windows for work, I inherited his Centris 650, which was my main computer for many years.

On that machine I learned to program in C with Metrowerks CodeWarrior and created my first web sites writing HTML in BBEdit. Before that, I bought a book on HyperTalk, and spent hours making black and white cartoons and little games in HyperCard to share with my friends.

While I never owned one of the classic B&W “compact” macs, I used them often enough at school. Even though I had a better System 7 machine at home, I still loved playing with those old System 6 machines, limitations and all.

Eventually I built my first Intel PC, jumping to Windows 98 instead of following Apple into PowerPC and Mac OS 8. That was in 1999, and I’ve never really looked back, in fact the only Apple product I’ve bought since then was a single iPod around maybe 2008.

Fascination with 68k

It wasn’t until I started getting back into retro games and consoles that realized that the Sega Genesis, my favorite childhood gaming console, ran on a Motorola 68000 processor – the same architecture as my old macs. It blew my mind that both systems, which couldn’t have been more different in my childhood mind, were more or less running the same CPU under the hood.

Wanting to try my hand at writing a Genesis game, I even started looking into programming in 68k assembly a few years ago, though I eventually abandoned the effort when I started costing out how long it would take me to actually make something, versus spending that time on my other hobbies. But the idea to do something with a 68k-based machine has gnawed at me ever since.

Emulators and disk format problems

Last year I started playing around with Mini vMac, an excellent classic mac emulator. Turns out there’s a lot of the old mac software still floating around online. Then I started thinking around buying and setting up some vintage hardware myself. I began researching and learned a lot about the various options for doing so, especially how to overcome the hurdle of actually getting files onto old hardware.

Getting bootstrapped isn’t easy. Basically, the primary option for getting data onto/off classic macs are floppy disks, and unfortunately, old mac floppies are just different. Even if you can get installers or disk images of all the old software online, you can’t just write them to a floppy from a PC. The disks are physically formatted differently, and you need an actual working classic mac with an original floppy drive to write them.

Once you have a classic mac up and running you can read PC-formatted disks with the right software, but the trick is getting the classic mac set up and working in the first place. A real chicken and egg problem.

The easiest thing to do is simply pay someone with a working classic mac to make a set of setup floppies for you, but even after that, you need to make sure the mac you’re using can read 1.4MB floppies (not just the older 400k/800k floppies) otherwise you still won’t be able to transfer data to/from a modern PC.

The crossover solution

The other (better?) option is to get a newer, but still old, classic mac as a “crossover” machine. Usually something from the PowerPC-era with a CD-ROM drive, Ethernet, even USB, with that special Apple floppy drive, as a staging ground for reading/writing old floppies. Then you transfer files from your modern PC to the crossover machine, then write floppies.

Now, and I’ll get into these later, there are also modern products that emulate floppy and hard drives that use SD cards, which you can read from / write to from any machine. But not only are they pricey, there are nuances to using them that don’t make it as simple as drag-and-drop.

Then there’s the question in any restoration: how original are you going to keep it? Every person, and every build is different, and the journey is just as important as the destination with a project like this. I mean, the emulators really are excellent – if I just want a quick rush of nostalgia, I can run all of this stuff in a window on my desktop.

Anyway, at the time I decided I didn’t want to invest either the time or the money to start such a project, and filed what I’d learned for later.

Now is later, looking for a new project

That’s where I left things last year: some emulator configs, setup disk images, and bookmarks saved off on my computer, in my perpetual project backlog.

Now it’s 2020, and while cleaning out a closet I found an old laptop I’d forgotten about. Not a powerful machine, but small and tough, and I thought “this would make a good emulator machine”. Now I’ve made my share of “emulator machines” and mini arcade-cabs, but I’d been watching a lot of videos on old 8-bit computers, and I thought, since the laptop is small and obviously has a keyboard, it might be fun to set it up as an old 8-bit computer emulator, specifically the Apple II and Commodore 64.

It was easy to set up, and I spent a few evenings exploring the old Apple II library. I never owned an Apple II, but like many 90’s kids I used them in elementary school, and it was fun to play through The Oregon Trail and Odell Lake again. But it was almost too easy to set up, and it only reminded me of the macs I used to have and all the research I did planning to restore one.

So I dug out my old notes and start trolling eBay. While it might be more “nostalgic” to try to rebuild my original IIfx or Centris, both are fairly large and would require an external monitor. I do have a home office now that I didn’t have last year, but there’s not a ton of space, and I don’t really want to add a big period-correct CRT onto my desk.

A laptop might work, but that’s a whole another layer of problems sourcing replacement hardware. And really, deep down, I want one of those classic compact macs. So I start working on a plan.

My goal is to take a 40-year old computer and give it a full overhaul – not just getting it up and running, but cleaning it inside and out, replacing components on the motherboard, fixing dead drives with new grease and gears, bleaching the case plastics back to the original color.

I don’t just want a working compact mac, I want to learn new skills, to get down and dirty in the hardware. Something that’s gonna take time and sweat to finish. Something that I can proudly display on my desk. Then, after all that, do what I always do with my hobbies, write some software for it. Finally scratch that itch to write something for a 68k machine.

Of course, I want to document my progress along the way. I’ve already gotten started, but this post is getting long in the tooth, so I’ll save that for Part II.

Stay tuned!

/jon

Introducing the RomSort utility

 

About a year ago I wrote a little command-line tool for sorting ROM files into alphabetical sub-directories. The main feature was it could intelligently combine the smaller sub-directories, which is useful when you’re browsing on low-resolution screens. However after I got the code working I never got around to sharing it.

So I took some time to re-package the code into a small .NET 2.0 WinForms app. It is pretty straightforward to use, and even gives you a live preview of what the end result will be before you use it. Note that filename collisions will be marked in red and it won’t let you perform the sort if there are any.

Source and binaries (under releases) @ RomSort on GitHub.

Enjoy!

/jon

Building a custom retro console running RetroPie

Ever since I first heard about Raspberry Pi and the RetroPie project, I’ve wanted to build a retro console. Something with all my favorite old game systems emulated in a compact classy box, with nice controllers and fully customizable.

Back in the day I used to have a soft-modded Xbox original to play retro games, but it was loud, bulky, and the controllers weren’t great. When I got my first Raspberry Pi, I tried to make my custom console, but I ran into several problems:

  1. Power issues: A non-clean shutdown meant corrupting the SD card, which isn’t user-friendly, and no power switch
  2. Weak ports: Connecting straight to the light-weight Pi meant it was often left hovering in the air, which would strain the HDMI and USB connections
  3. Available cases: Raspberry Pi cases all seem to fall into the category of tight as possible, giving no internal room to address 1 and 2 above

My first successful attempt was of course building the Picade, but it has two major limitations:

  1. One player only
  2. Kind of heavy to play on a couch

Since then I’ve been planning a new machine. The goal has been a small, two-player console that connects to modern TVs. Then after I discovered this lovely Polycase ZN-40 electronics enclosure, I new it was time to get to work. Yesterday was Pi Day, and I’d just cloned my Picade SD card, so I decided to finally try putting a console together.

It went together way faster than I anticipated! Now I can’t wait to make a couple more: one for home, one for work, one for the game room… the opportunities are endless.

Okay, enough typing, time to play!

/jon

P.S. Here’s a quick video and some development pics:

 

retroconsole01 retroconsole02 retroconsole03 retroconsole04 retroconsole05 retroconsole06 retroconsole07 retroconsole08 retroconsole09 retroconsole10 retroconsole11

Building the Picade Mini Part V, final touches

In Part I I put together the cabinet, in Part II I got the main electronics installed, in Part III I created a custom rear jack panel, and in Part IV I got everything up and running 95% how I wanted.

After that last post, I took the machine to work to show off. Got lots of people to try it out, and the biggest bit of feedback was people wanted their MAME games. I also really wanted to play six-button Sega Genesis games. So I spent some time updating my secondary RetroPie build to the latest version, which gave me a much more functional Genesis emulator, including save state support and six-button controls. Then I switched to mame4all-pi, and put the correct MAME roms on the box, which finally gave me working MAME games.

Once I was sure the update would improve things without breaking my Picade, I went ahead and switched back to that build. I updated the Picade, and when that was done, it turns out I was using the wrong resolution before. The Picade Mini has a 4:3 screen, and I was outputting widescreen before. Once I fixed that, I changed the splashscreen to use the official Picade art from the Kickstarter.

The last bit of work was getting MAME working. It involved making all of the requisite folders mame4all-pi needs to save configs and high scores. Once that was done, I spent the time to go into MAME and reconfigure all of the controls to use what I have on my joystick. Everything I’ve done is in the updated configs file I’ve attached at the bottom of this post.

Here’s an updated video of the build in action:

And the original video if you missed it:

Enjoy!

/jon

My Picade Configs [184k ZIP] Updated 02-JUL-2014

I’ve configured my build to use as much screen real estate as possible without compromising on aspect ratios. The buttons are set up such 1-6 on the top map to playing buttons (Y X L B A R), the front are for Start and Select, and the side buttons are Escape and Control. Holding the right side button while I hit another button performs various emulator commands:

  • Left side – exit the emulator and return to the menu
  • B (bottom row, first button) – lower volume
  • A (bottom row, 2nd button) – raise volume
  • R (bottom row, last button) – hits Ctrl+C to forcefully exit any game
  • Y (top row, first button) – load state
  • X (top row, 2nd button) – save state
  • Select – bring up emulator menu

Includes configs for all of the RetroArch emulators, and for mame4all-pi. Feel free to change the configs to support your own needs.

Building the Picade Mini Part IV, let’s finish this up!

In Part I of this build, I put together the main parts of the cabinet. In Part II I got the main kit’s electronics installed and tested. In Part III I created a custom rear jack panel.

Next step was to finally install the rear door. The included hinges and latch worked perfectly.

Rear panel attached Rear panel open

With the rear door in place, it was time to install the Raspberry Pi and put into effect my grand wiring scheme.

The goal has always been a single power supply with a single power switch to get me into a ready to play system. With that in mind I installed a single throw, double pole switch.

The first pole is responsible for powering the monitor and customized USB hub directly. For the monitor I used the cut off the barrel-end of the included power supply. For the USB hub I severed the power leads for the host plug (so that it would never draw power from the Raspberry PI itself) and ran new power lines straight out the side. Simple enough, and both devices power up as soon as I hit the switch.

Rear panel wired 2Now for the Raspberry Pi itself, I need something else. If I run power straight from the switch to the Pi, then killing the power threatens corrupting the Pi’s SD card and killing the machine.

Since it’s a common enough problem, and since I didn’t want to reinvent the wheel, I simply used a Mausberry shutdown circuit. In concert with a small script that runs on the Pi itself, what the shutdown circuit does is uses a pair of GPIO pins on the Pi to monitor when the Pi is running. When the switch is thrown, the circuit tells the script to tell the Pi to perform a clean shutdown. After the shutdown occurs (killing the script), the circuit finally cuts power to the Pi.

So essentially I wire power straight from my jack to the shutdown circuit, and attach the second pole of my switch to the designated spots on the shutdown circuit. (There’s also room for an emergency swtich to reset the Mausberry circuit itself, but I didn’t bother).

Rear panel wired 1Sum total is that when the power switch is turned on, everything is powered on. When the switch is turned off, power is cut immediately to the monitor and USB hub, and a signal is sent to the Pi to shutdown cleanly. About 2-3 seconds later, the Pi shuts down and power is cut to the Pi.

So as long as I don’t physically pull out the jack, I can safely hit the power switch to power off the machine, even in the middle of a game, as long as I wait for a few seconds before pulling the actual plug. The speakers pop when the Pi loses power, so I know I’m safe to unplug.

The last bit of hardware setup was to connect the Pi in to everything. I connected the shutdown circuit and Ethernet jack to the Pi and both the rear USB jacks and the Picade controller to the USB hub (I’ll explain why later). I connected the HDMI from the monitor to the PI and the audio out from the Pi to the Picade board.

Finally, time to start playing with the software!

My first attempt at building an emulator rig with Raspberry Pi used the wonderful RetroPie Project. Since I had already gotten that up and running on another build, (with lots of games working) I decided to take a shortcut and clone that SD card as my starting point for my Picade.

First I tweaked the config.txt to optimize the display for the Mini’s screen (I’ll attach my config at the end of the post). Then I configured the Picade joystick as the new (and only) device. Again, I ended up needing to reprogram the Picade controller, as the default key selections, while great for MAME, actually caused all kinds of problems with RetroArch, which is the framework a lot of my emulators were using. (Again, I’ll add my configs to the end of the post).

The last real configuration (and it still needs some work) was for audio. By default, if you have HDMI connected, the Pi won’t output audio from the 3.5mm jack. I fixed that with the Raspberry Pi sound troubleshooting guide. (Hint, it’s amixer -c 0 cset numid=3 1).

The only audio hiccup I still have is that by default the sound is at max volume at boot. And it is LOUD. Even worse, it seems like potentially something is shorting on the Picade board- such that if the Picade board is wired directly to the Pi, and a loud sound plays, the controls straight up die. The solution I found for the controls was to connect the Picade controller board to the USB hub instead. As for the loud sound, my current workaround is to go in and out of the settings for Emulation Station (the front-end UI for the emulators) after boot. For some reason this resets the audio to regular ranges until I reset or power down.

After figuring that out, the box pretty much runs the way I want it to. I can play NES, SNES, GB, GBC, and GBA without any problems. Master System doesn’t work too well. Genesis works but the emulator (Picodrive) for some reason is locked to 3 button mode only. I haven’t gotten MAME to work yet- none of my roms are the right version it seems.

At this point the project is basically done. I might add a headphones jack, but the joystick itself is super loud anyway. The whole thing fits comfortably on my lap to play, but the front edge is sharp on the wrists so I might grind that down a bit.

Anyway, hope you enjoyed following my build!

/jon

My Picade Configs [184k ZIP] Updated 02-JUL-2014

I’ve configured my build to use as much screen real estate as possible without compromising on aspect ratios. The buttons are set up such 1-6 on the top map to playing buttons (Y X L B A R), the front are for Start and Select, and the side buttons are Escape and Control. Holding the right side button while I hit another button performs various emulator commands:

  • Left side – exit the emulator and return to the menu
  • B (bottom row, first button) – lower volume
  • A (bottom row, 2nd button) – raise volume
  • R (bottom row, last button) – hits Ctrl+C to forcefully exit any game
  • Y (top row, first button) – load state
  • X (top row, 2nd button) – save state
  • Select – bring up emulator menu

Feel free to change the configs to support your own needs.

Update: See the video: Picade Mini build running RetroPie.

Update: Part V is up.