My Mac SE/30 Part VI: SCSI2SD Installation

In Part V of this series I upgraded the RAM and ROM in the vintage Macintosh SE/30 that I’ve been restoring. In this post, I replace the old dead hard drive with a modern SCSI2SD.

As mentioned in Part II, the hard drive that came in this machine was a 426 MB Segate ST1480N, an upgrade from a previous owner. It doesn’t boot anymore but that’s no surprise – it’s 27 years old at this point. I tried hooking it up to my bridge Power Mac 8600/200, but it didn’t even recognize a drive was connected.

In any case, my plan was always to replace the drive in this SE/30 with a SCSI2SD, which, if you aren’t aware, is a modern device that can simulate one or more SCSI drives using an SD card for storage:

Mounting options

I’ll cover setting up the software side of the SCSI2SD in a later post, for now, the goal is just to get it physically installed and hooked up where the old hard drive used to be. At first glance, it seems pretty straight-forward, but there’s a few minor problems.

First off, the original hard drive screws into the sides of SE/30’s metal drive caddy, and the SCSI2SD only has bottom mounting screw holes. Given that the SCSI2SD is just an exposed circuit board, even if you could mount it, you wouldn’t want the metal caddy to short anything underneath the board.

Secondly, the original hard drive was oriented such that the side with the SCSI port was to the rear of the machine. If I mount the SCSI2SD the same way, then the side with the SD card and USB port will be pointing inside. One of the main reasons I want to use the SCSI2SD is to be able to easily access the SD card to transfer files, make backups, or even swap it out for testing alternate cards. As-is, I’d have to take the case off every time to get to the card, or to connect a USB cable to configure the device itself.

Thankfully, Colin from This Does Not Compute solved both of these problems by designing a custom SCSI2SD Bracket for the Mac SE/30. Instead of mounting to the drive caddy, the 3D-printed plastic bracket mounts to the back of the SE/30’s chassis, and aims both the SD card slot and the USB port out the rear of the case. As detailed in his video, the SE/30 supports expansion cards, and so there’s a small opening in the rear of the case to expose any extra ports those expansion cards might have.

Since I have zero plans for adding any expansion cards, I decided to go with his bracket. He doesn’t sell them but he open-sourced the design, and since I don’t have a 3D-printer of my own, and since this was my first ever time needing a 3D-printed part for a project, I finally got to see what it takes to get someone else to make it for me.

The process was easier than I expected. After getting a little lost looking at sites that handled bulk orders, I found makexyz, an on-demand service that will forward your job to a local printer to print your one-off part. I just uploaded the STL file, kept the default settings, and in a week or so I got the bracket in the mail:

Extending the LED wire

While I waited for the bracket to arrive, I set to solving another problem. The SE/30’s case has small LED in the front that wires to two pins on the hard drive in order to show disk activity. The SCSI2SD does have pin holes for an activity LED, however with the SCSI2SD flipped around, the original wire doesn’t reach.

Wanting that LED to be functional, and not wanting to modify the original wires in any way, I finally invested in a set of various connectors and crimps and made a custom “extension wire”:

I also added a matching header to the SCSI2SD board. Hooking up the LED is very much optional, but I was positively ecstatic to see it flashing when all was said and done. But I’m getting ahead of myself.

Minor bracket adjustments

When the bracket arrived, it came time to actually install it into the machine. However I hadn’t noticed that in Colin’s setup he had removed the original hard drive caddy in order for his bracket to fit. I, on the other hand, intended on leaving the empty caddy in so I wouldn’t ever misplace it.

This was almost a non-issue, except for one tiny little spot where the bracket and caddy intersected. So I busted out my Dremel and cut a small groove in both the bracket and the SCSI2SD board itself:

Installation

With the grooves cut, the bracket cleared the caddy and installed quite easily:

The LED extension wire I made reached perfectly, and looking at the back of the machine, you can see where the bracket mounts to the expansion port slot to expose the SD card and USB port.

But now there was another problem. The SCSI port on the motherboard is near the rear of the machine, very close to the original hard drive’s port. As such, the original SCSI cable was very short, and though it’s kind of hard to see, it’s now stretched to its absolute limit to reach the port on the backwards SCSI2SD.

Not wanting to add any unnecessary strain on the parts, I went and ordered a new longer cable. And by new, I actually mean new! I assumed since SCSI cables aren’t used anymore I’d have to buy an old one, but I was happy to find someone making brand-new SCSI cables in various lengths. It worked perfectly:

The last thing to do was connect power. Now, the SCSI2SD can be powered one of three ways: directly over the SCSI cable (if the motherboard supports it), via USB (if you really want to run a cable there) or via a standard floppy power-cable.

While technically the device draws way less power than a traditional hard drive, and could therefore probably run off just the SCSI cable, I wasn’t sure that the SE/30 motherboard supported and I happened to have a spare Molex-to-floppy power adapter handy. So it was easy enough to continue using the existing hard drive power cable to power the SCSI2SD instead:

With the SCSI2SD installed, my planned hardware upgrades were complete. While there’s still work to be done inside, such as re-capping the analog board and completely cleaning and greasing the floppy drive, for now, it was finally time to close up the case.

I popped off the small door to the rear expansion slot (and taped it inside the case so I wouldn’t lose it), so here you can see the final result from the rear:

I think it looks quite clean, and since it’s recessed inside the case, it’s not immediately obvious that it’s even in there. The SD card sticks out a bit but doesn’t clear the case, so there’s little risk of accidentally bumping it.

That’s it for now, stay tuned for Part VII, where we finally turn to the software-side of restoring this machine.

/jon

Want to read from the beginning? Start at Part I.

Adventures in Macintosh restoration Part VIII: Fresh Setup

In Part VII, I experimented with a variety of Mac OS system software combinations on my Power Macintosh 8600/200. Now it’s time to finish up the experiments and get this machine up and running.

One more way to transfer files

The most important job a of a bridge machine is to be able to transfer files to older machines, and as I’ve explained in the previous parts, this machine is pretty flush with methods for doing so. However, before I got all that working, one of the first recommendations I got from other vintage mac fans was to try and add USB support with a Sonnet Tango PCI card.

I found one cheap on eBay, brand new and still in the box:

It was a quick and pretty effortless install into one of the machine’s open PCI slots. While it requires Mac OS 9 to operate, and then only at USB 1.1 speeds, it has quickly become one of my favorite methods for transferring files.

Mac OS 9 can understand FAT32 filesystems, so rather than deal with floppies, burning CDs, or the relatively slow network, I’ve found that the fastest and often most convenient option is to just use a little USB drive. The biggest issue was having to reach to the back of the machine to access the ports, but thankfully the card has an “internal” port, so I was able to route a USB extension cable out front slot for the missing ZIP drive.

SCSI2SD second thoughts

It’s now, when I’m all ready to set up this machine with its “final” setup, that I start to question my use of the SCSI2SD. It’s a very useful and powerful device, but it’s also kind of expensive. Beyond being a “drop-in” replacement for a SCSI hard drive, it’s useful to be able to remove the SD card to make backups, add/remove files, etc. But this machine already has so many ways of transferring files, and having to pop open the case to remove an SD card is pretty inconvenient by comparison.

As I’ve mentioned before, my true goal is to a restore an older compact mac. This current machine is just a tool toward that end, so it seems a little wasteful to dedicate a SCSI2SD for it, if the long-term fate of this machine is to be stored away and only used when needed. Plus, any future compact mac will have probably need a hard drive replacement of its own, where the benefits of a SCSI2SD may be better appreciated.

Revisiting SCSI

So rather than plan on forking out the money for another SCSI2SD in the future, I decided to take out the one I have and re-look into my options for installing a real SCSI hard drive into this machine. In Part VI I mentioned the lack of new SCSI hard drives, and the problem with old ones is finding one that still works.

However, while SCSI ultimately failed in the consumer market, many of the newer SCSI drives that do exist are still backwards compatible with the older SCSI protocol, given an appropriate cable adapter.

So I consulted r/VintageApple for advice, and after trolling around online I ended up scoring an 18 GB SCSI hard drive for $5, with free shipping even! As for the cable adapter, a reddit user who had already done the exercise of buying every possible adapter pointed me to the only one that actually works as advertised.

Since the drive was originally intended for server racks, it’s slower, larger, and louder than comparable consumer drives, but the price simply couldn’t be beat.

It worked perfectly with a patched copy of Drive Setup, and I partitioned the drive three ways – a 11GB HFS+ primary partition for Mac OS 9.2, a 2GB HFS partition for Mac OS 7.6, and a 4GB HFS partition for miscellaneous data.

Installing Mac OS 7.6

Once the hard drive was partitioned, I went ahead and installed Mac OS 7.6 first. I didn’t screenshot the whole process, but for the benefit of any future person who’s never had to install 7.6 on a Power Mac in 2020, here’s a rough outline of what I did:

  1. Boot from the 7.6.1 install CD (hold “c” if necessary)
  2. Run “Install Mac OS”
    1. Skip straight to Step 4, “Install the software”
    2. Customize the install according to the suggestions here:
      1. MacOS 7.6.1 Update
      2. QuickDraw 3D
      3. MacLinkPlus
      4. English Text-To-Speech
    3. Under Options, check “Create new System Folder”
    4. Install to the 2GB partition I set up for 7.6
    5. Start!
    6. For everything else, just select “Easy Install”
  3. Reboot when finished

Then, after the machine booted back up from the hard drive, it’s time to update some settings in the Control Panel:

  1. Configure Energy Saver to “Shut down instead of sleeping” and set the timer to “Never”
  2. Open Control Panel > TCP/IP
    1. Confirm you want to enable TCP/IP after the panel closes
    2. Connect via Ethernet
    3. Configure to use the DHCP server
    4. Exit, saving configuration
  3. Open Control Panel > Control Strip
    1. Hide Control Strip
  4. Open the Extensions Manager, and disable the following “Control Panels”:
    1. Control Strip
  5. Again in the Extensions Manager, and disable the following “Extensions”:
    1. Color SW 1500
    2. Color SW 2500
    3. Color SW Pro
    4. Desktop Printer Extension
    5. Desktop Printer Spooler
    6. Desktop PrintMonitor
    7. ImageWriter
    8. Iomega Driver
    9. LaserWriter 300/LS
    10. LaserWriter 8
    11. Printer Share
    12. PrintingLib
    13. PrintMonitor
    14. StyleWriter 1200

Finally, I installed the 2020Patch Extension so I can set the date past 2020. And here we are, only 8.5MB used at boot:

Now, these particular settings might not be right for everyone, as they reflect my setup: I have a TCP/IP network, but no printers, and I have never been a fan of the Control Strip. Now on to the primary OS for this machine, OS 9.2.2.

Installing Mac OS 9.2.2

The road to Mac OS 9.2.2 is a little more involved, but again, here’s an outline of what I did:

  1. Boot from the 9.1 install CD (hold “c” if necessary)
  2. Run “Mac OS Install”
    1. Under Options, check “Perform Clean Installation”
    2. Install to the 11GB partition I set up for 9.2
    3. Start!
    4. Continue and Agree until you see another “Start” button
    5. Customize with just the following:
      1. Mac OS 9.1
      2. Internet Access (Custom)
        1. Internet Utilities
        2. Microsoft > Internet Explorer
      3. Text-to-Speech
      4. ColorSync
    6. Start!
  3. Reboot when finished

After the machine reboots, complete the Setup Assistant. Then, as before, it’s time to update some settings in the Control Panel:

  1. Configure Energy Saver to “Shut down instead of sleeping” and set the timer to “Never”
  2. Open Control Panel > TCP/IP
    1. Confirm you want to enable TCP/IP after the panel closes
    2. Connect via Ethernet
    3. Configure to use the DHCP server
    4. Exit, saving configuration
  3. Open Control Panel > Control Strip
    1. Hide Control Strip

Now we’ve got a pretty clean 9.1 install, but we want 9.2.2. To do that we’re going to need to get three things onto the machine:

  1. OS 9 Helper
  2. Mac OS 9.2.1 Update
  3. Mac OS 9.2.2 Update

Once you have that, you’ll need to do the following:

  1. Open the “Mac OS 9.2.1 Update” and mount the disk image
  2. Run “OS 9 Helper 1.0.1”
    1. Select “Install Mac OS 9.2.1”
    2. Begin Installation
    3. Continue and Agree until you see another Start Button
    4. Customize with the following:
      1. Mac OS 9.2.1
      2. ColorSync
  3. Start!
  4. Reboot when finished

After the reboot, complete the Setup Assistant again, then:

  1. Open the “Mac OS 9.2.2 Update” and mount the disk image
  2. Run “OS 9 Helper 1.0.1”
    1. Select “Install Mac OS 9.2.2”
    2. Begin Installation
    3. Continue and Agree until you see another Start Button
  3. Start!
  4. Reboot when finished

After the reboot, complete the Setup Assistant one final time. Now we can clean up the Control Panel – I used the list here to get started:

  1. Open the Extensions Manager, and disable the following “Control Panels”:
    1. Control Strip
    2. Location Manager
    3. Multiple Users
    4. Software Update
    5. USB Printer Sharing
  2. Again in the Extensions Manager, and disable the following “Extensions”:
    1. Color SW 1500
    2. Color SW 2500
    3. Color SW Pro
    4. Control Strip Extension
    5. CSW 6000 Series
    6. Desktop Printer Extension
    7. Desktop Printer Spooler
    8. Desktop PrintMonitor
    9. FBC Indexing Scheduler
    10. ImageWriter
    11. Iomega Driver
    12. LaserWriter 300/LS
    13. LaserWriter 8
    14. Location Manager Extension
    15. Multi-User Startup
    16. Printer Share
    17. PrintingLib
    18. PrintMonitor
    19. USB Printer Sharing Extension

And here we are, only 16.6MB used at boot:

That’s it for today, I think I’ve got one more post left in me for this machine, so stay tuned for Part IX!

/jon

Want to read from the beginning? Start at Part I.

Adventures in Macintosh restoration Part VII: System Experiments

In Part VI, I was able to install Mac OS 8.1 on my Power Macintosh 8600/200 using a SCSI2SD as the machine’s hard drive, and I was even able to get online. Now it’s time to play around with that setup.

The original plan

The plan for this machine has always been as a bridge machine between modern computers and older vintage Macs. It’s meant to give me some practice cleaning and restoring old parts, while also being as flexible and compatible as possible. It’s a utility machine.

In order to be the most compatible with the most software and the most hardware, I figured I’d need to install as many versions of Mac OS as possible. This machine officially supports System 7.5.5 through Mac OS 9.1, but rather than install the dozen of minor versions in-between, I thought one install per major version should be enough.

System 7

Let’s start with System 7. As far as I can remember, my childhood machines ran 7.0.1 or 7.1, older than what this new machine can handle. I remember the 7.5 series existing, and it’s possible that in the later years I ran it on the Centris 650 when I first got internet access.

System 7.5.5 is the earliest software this machine can run, and it’s the last version to support running 24-bit addressing (something the oldest programs need). The other contender for System 7 would be 7.6.1, which is considered mostly the same, except it’s got some PowerPC performance improvements that would apply to this machine.

In the end I actually chose 7.6.1 for this machine. It turns out the 24-bit support only applies to the 68k Macs, and this machine will never be able to run programs that need it. So 7.6.1 has the exact same compatibility as 7.5.5 but is just faster.

Beyond System 7

After System 7, we’re out of my personal experience. I may have used Mac OS 8 once or twice in high school, but I’ve never used Mac OS 9. I have no nostalgia for these systems, so the only requirement is to expand my access to software and hardware.

My initial plan was to pick just the latest in each line that I could run, Mac OS 8.6 and Mac OS 9.1. While I’m currently running 8.1, and having a little fun here and there playing some old games, as far as I can tell there’s no reason to run this version with newer ones available.

However, talking with people online, and it seems there are three camps when it comes to OS 8.

Camp one thinks System 7 was the pinnacle of Mac systems in terms of design and speed, and everything after that was bloat. They point out that the change from 7 to 8 was just to cut out the clone manufacturers, since they only had licenses to System 7. So 8 is really just a bunch of crap on top of 7.

Camp two thinks OS 8 is the pinnacle of Mac design, that 8 refined and filled in all of the gaps of 7. They say System 7 is too spartan for newer machines, and point out that 8 added better networking support and just as importantly, support for larger hard drives.

Camp three thinks OS 8 can be skipped entirely, thanks to Mac OS 9. Very little software lists OS 8 as a minimum, and even so, it’ll still run on OS 9. Same with hardware. Most things just work on 7 and above, or require 9, so unless you really like the style of 8, there’s no reason to use it if you can run 9.

I already planned on installing 9 as it gives me access to a variety of useful hardware upgrades on this machine such as USB and Firewire. So I decided to table the decision on OS 8 for now.

Let the experiments begin!

The first thing I did was backup the SD card with Mac OS 8.1. It doesn’t have anything particular that I care about, other than being a booting system. I re-setup the SCSI2SD with three virtual drives, then booted the 8.1 CD to use Drive Setup to format them.

I had already downloaded and burned CD images for a variety of versions: 7.5.5 and 7.6.1 specifically for this model, universal installs for 8.0, 8.5.1, and 8.6, and finally universal installs for 9.1 and 9.2.2.

I won’t go into all of the gory details here, but suffice it to say that I spent weeks installing and re-installing different OSes to the different virtual drives. I followed various suggestions online and took my own notes during the installation process of each. I ran benchmarks, browsed the web, and downloaded some apps and games to try out.

One win was getting an FTP server to run on the Mac, which meant I could more easily transfer files to it from a modern PC. That freed me up to download new software quickly on my PC, then upload the files to the Mac at my leisure. This gave me both an archive of downloads on the PC and saved me from having to browse the web on the Mac and deal with increased chance of download failures.

The other big win was installing Mac OS 9.2.2. Officially most machines can only run 9.1, because that was basically the last version of OS 9 meant to be run as an independent OS. By that point in time, Apple had switched over to OSX, but early versions still provided a “Classic Environment” compatibility layer that let those OSX users still run their old OS 9 apps.

Classic Environment still required a full copy of OS 9, and it got a few more stability and performance updates in the form of 9.2, 9.2.1, and 9.2.2. So installers exist for those versions, but of course they have protection measures in place to make sure you don’t just install them on older hardware.

However, thanks again to enterprising hackers, there’s a tool called os9helper that lets you trick the installer into working. And it worked!

The final plan

At the end of it all, I’d pretty much settled on a plan of only installing 7.6.1 and 9.2.2. I didn’t find any reason to keep 8 around, the installs sat dormant while I spent most of my time in 9.2.2. In fact, even keeping 7.6.1 around seemed to be “just-in-case”.

Anyway, this has been a pretty text-heavy post. I didn’t bother to take any pictures during all this software experimentation. Next time I’ll have more photos, as I dive into some hardware upgrades. So stay tuned for that in Part VIII!

/jon

Want to read from the beginning? Start at Part I.

Adventures in Macintosh restoration Part VI: Booting up and jacking in

In Part V, I was able to boot my Power Macintosh 8600/200 from a burned system CD. Now it’s time to get a system installed.

Hard drive options

At this point, I can boot the Mac OS 8.1 system CD, but I don’t have a hard drive to install it to. The first, most obvious answer, is to just get an old hard drive and install it.

However hard drives, especially mechanical ones, can have a rather short lifetime compared to other computer components. So while getting an “era-appropriate” hard drive is possible, it would be a gamble. Not to mention this computer originally shipped with a whopping 2GB drive – old hard drives come in sizes so small you can’t buy anything with that little storage any more.

So why can’t I just buy a new hard drive and install it? One word: SCSI.

SCSI is a old set of standards (cables, protocols, etc) for connecting computers to drives, and isn’t really used anymore for modern computers. Broadly speaking, vintage macs used SCSI and vintage PCs used IDE. These days there aren’t any new SCSI hard drives. It’s part of the reason I was so happy the CD-ROM worked – tracking down a replacement SCSI CD-ROM could have gotten pricey.

What does this mean for me? I already have an alternative, something I had bought in anticipation of this problem.

Hello SCSI2SD

The SCSI2SD is a device which simulates one or more SCSI drives using an SD card. Like the Floppy Emu, it was designed for people trying to keep older hardware up and running.

It’s not as easy to use as the Floppy Emu – that device is pretty plug and play – you copy your floppy disk images onto the SD card and use its built-in screen and controls to select which disk to load at runtime.

The SCSI2SD has a steeper learning curve and requires a little more setup. It connects to your PC via USB and comes with a configuration utility which you use to define the devices, or disks, that the SCSI2SD should report to the computer.

However, instead of having disk image files, the SCSI2SD requires you to map these drives directly to sectors on the SD card. So if you ever pop the SD card into your PC, it’ll tell you the disk is unformatted and ask you to format it. It also means you can’t easily add and remove files.

Basically, once you’ve configured it to your liking, it’s a great drop-in replacement for a missing hard drive, and you can backup your data by making a disk image of the entire SD card. Adding or extracting individual files is possible but requires a lot more work and tools.

Out of the box the SCSI2SD is configured for a single 2GB drive, a safe size for SCSI machines. And since my goal at this point is just to get a system, any system, up and running, I just kept the defaults for now.

Installing Mac OS 8.1

Time to install Mac OS 8.1. I plugged in the SCSI2SD and booted the system CD. Then I opened the “Drive Setup” utility to format the new hard drive.

Not supported. 😦

See, on top of using a connection that no one uses anymore, Apple also put in measures to make sure that you only install “Apple-approved” components. In this case, the utility for formatting hard drives has a fixed whitelist of specific brands, models, and versions of hard drives that it can format. So it doesn’t like my fancy new 2GB drive.

There’s a couple ways around this. One is to find a patched version of the program, where enterprising hackers removed the whitelist. I could put that into a floppy image and use the Floppy Emu to load it. Another option is to use a third-party drive utility, again by putting it into a floppy image.

The easiest way however, is to simply lie to the program. 🙂

Despite being a bit complicated to use, the SCSI2SD config does let you configure practically everything SCSI-related, including the vendor and product information reported by each drive. So I just looked up which drives were supported back then, and configured my drive accordingly:

Once I had that set, Drive Setup worked just fine and I was able to initialize my new hard drive. All that was left was to run the Mac OS 8.1 installer, where I gladly accepted the defaults along the way.

First boot and Y2K20

When it rebooted, my first vintage mac in twenty years was finally up and running. It wasn’t the final setup I envisioned for this machine – having multiple versions of the OS on different (virtual) drives, ready to support whatever older mac I want to restore, but it worked. Moreover, so far all of the original hardware seemed to be in working shape. I could read CDs and read and write floppies. If I really needed to, I could even do the tedious work of injecting files into the SD card.

Back in Part III, I mentioned that the first thing when opening the machine up was to replace the PRAM battery. The PRAM battery is responsible for maintaining the clock and some settings, so the first thing I did when the machine booted was to set the clock. Now we run into a funny bit of history – the Y2K bug, or specifically, how it didn’t affect macs. Long story short, many vintage computers saved memory by only saving the last two digits when keeping track of the current year. Their clocks were essentially restricted to dates between 1900 and 1999.

Macs didn’t suffer from Y2K – from the beginning their clocks took dates from 1941 to 2040. But just because the hardware supports 2020, doesn’t mean they didn’t take shortcuts in the software – the control panel for setting the date still takes only two digits, and interprets them as being between 1920 and 2020. So macs have the Y2K20 bug. If you set your clock in 2019, it would have rolled over fine to 2020 and beyond. But there’s no way to manually change the date to 2020 to later.

Thankfully, enterprising hackers come to the rescue once again, with a set of patches for the control panel to let you set the correct date. So after installing that and another reboot, I was able to properly set the clock on this machine, and get on to the very first thing I really wanted to test on an up and running system – networking.

Connecting to the tubes

Even the earliest macs had built-in support for networking, but, as with SCSI, they used protocols and cables that aren’t in use anymore. Thankfully this isn’t one of the earliest machines, and as I mentioned back in Part II, this machine has built-in 10Base-T Ethernet, with the still-standard RJ45 Ethernet jack. It’s literally the slowest possible connection that can still connect directly to a modern Ethernet network without any adapters.

I’d also just spent the weekend running Ethernet cable to my office, for “work” purposes. 🙂

So I grabbed a spare Ethernet cable and plugged the old mac into my switch. A couple clicks through the Mac OS internet settings to enable TCP/IP, and quick double-click on Internet Explorer 3.0.1, and we’re off to the races:

Well, races is a stretch, but success! It’s literally 100x slower than my network can handle, but that’s still 40x faster than an old dial-up modem. A lot of sites won’t work on such an old browser, but I didn’t hook this up to browse the web. Network access means much easier file sharing with my modern computers. Still, I took it for a spin on theoldnet.com, and even filed a bug when the website for the product I work on didn’t load properly.

Well, that’s a lot of progress for one post. Stay tuned for Part VII!

/jon

Want to read from the beginning? Start at Part I.